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The fully frustrated Ising model in infinite dimensions 
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Abstract. We solve, subject to the validity of some reasonable assumptions, the ‘fully 
frustrated’ Ising model in the limit of infinite dimensions using an extension of the TAP 

theory for spin glasses. In contrast to the TAP theory of the infinite-range spin glass, an 
infinite summation of diagrams is required to recover the Gibbs free energy for this model. 
The model undergoes a first-order transition. The method used to solve the model should 
have many applications to other physical problems. 

1. Introduction 

Frustration and disorder are the two key features of the spin glass. In trying to 
disentangle the relative importance of these two elements, it is natural to consider 
models in which only one of them is present. In this paper, we will study the ‘fully 
frustrated’ Ising model on a d-dimensional hypercubic lattice, a model which was 
introduced by Villain in its two-dimensional form [ l ]  and extended to arbitrary 
dimension by Derrida et a1 in two papers [2,3]. This is a model which incorporates 
strong frustration without disorder. Numerical simulations by Diep et a1 [4] established 
that this model undergoes a phase transition into an ordered phase in three dimensions. 
Whether the transition is of first or second order in that case is still somewhat unclear 

For many models in statistical physics, the limit of infinite spatial dimensions is 
particularly simple-it usually serves as a limit in which ‘mean-field theory’ is exact. 
In [3] the infinite-dimensional limit for the ‘fully frustrated’ Ising model on a hypercubic 
lattice was considered, but they were only able to solve for the free energy in the 
high-temperature phase. In this paper, we give an exact solution (subject to some very 
reasonable assumptions) for the free energy of this model in the infinite-dimensional 
limit for both low- and high-temperature phases, and we show that the two phases are 
separated by a first-order transition. It is very interesting that in this infinite-dimensional 
theory, in contrast to the theory of the Ising ferromagnet in infinite dimensions, spins 
can be influenced by very distant spins through large loops. We believe that the method 
we use to solve this model is also interesting in its own right, and should have many 
applications for other physical models. 

VI. 

We consider a Hamiltonian for Ising spins located on a hypercubic lattice 

H = - JjjSjSj .  
( 0 )  
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A ‘fully frustrated’ Ising model is one in which every plaquette (elementary loop of 
four spins) is frustrated-i.e. the product of the four bonds in the loop is negative [6]. 
We consider the model in which every bond has the same magnitude (although they 
will differ in sign) which is scaled as IJ,,i = 1 / d .  This scaling ensures that the critical 
temperature and ground-state energy density are O( 1). Notice that this scaling is the 
same as the scaling of the spin glass and different from the l / d  scaling appropriate 
for ferromagnets. 

A fully frustrated hypercubic lattice can be constructed in any dimension using a 
recursive procedure [2]. One first constructs a fully frustrated d-dimensional lattice. 
One stacks the d-dimensional lattices on top of each other to make a ( d  + l ) -  
dimensional lattice. Then one flips the signs of all the bonds in every other d- 
dimensional lattice. Because every bond is flipped, those d-dimensional lattices are 
still fully frustrated. Finally, one connects adjacent d-dimensional lattices with fer- 
romagnetic bonds. As the adjacent lattices have bonds of opposite sign, connecting 
them with ferromagnetic bonds insures that every plaquette in the ( d  + 1)th dimension 
is also frustrated. The procedure can be started using the one-dimensional ferromag- 
netic chain. 

In [3] the high-temperature free energy of the infinite-dimensional fully frustrated 
Ising model was found by an indirect argument-they solved the fully frustrated 
spherical model exactly, and then showed that the high-temperature expansion in 
infinite dimensions scaled in a simple way with n, where n is the number of the 
components of spins. The free energy that they found was 

- 1 + h X $  1 
PF-In2+ N 4 - - 4 I n  ( 1 + J:+sp‘) (2) 

where P is the inverse temperature and N is the total number of spins. 

2. The method of solution 

The method that we use to solve this model in its low-temperature phase is an extension 
of the theory that Thouless et a1 [7] (TAP) developed for the infinite-range spin glass. 
Plefka [8] had previously derived the TAP equations using the same formalism, but he 
did not exploit the formalism to extend the TAP equations. Our extension of the TAP 

theory should have many applications, and has already been used to derive l / d  
expansions valid in the low-temperature phase for both ferromagnets [9] and spin 
glasses [lo].  It should be recalled that previous l / d  expansions for those problems 
[ll-131 were valid only in the high-temperature phase. A closely related formalism 
was used twenty years ago by Gaunt and Baker to study the Ising ferromagnet in its 
low-temperature phase [ 141. 

To illustrate the generality of the method used, we will consider, for the time being, 
an Ising model in which the bonds Jij are arbitrary and can connect any two spins. 
We will specialise to the ‘fully frustrated’ hypercubic Jij bond matrix later. We construct 
a Gibbs free energy which depends on the magnetisation at every site i: 

The Lagrange multipliers aI(P) fix the magnetisation at each site i to their thermal 
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expectation values: m, E ( S I ) ,  where the meaning of the ( ) brackets is that if we have 
some operator 0, then 

(O)=  Tr,s,,O expW X, J ,S ,S l+~ ,  a , ( P ) ( S ,  - m , ) l  
(4) 

Note that the Lagrange multipliers a,(P)  explicitly depend on the inverse temperature. 
Since m, is fixed equal to (S,) for any temperature P, it is, in particular, equal to 

(S,) when P = 0, which means that 

Trcs,) exp[P E, J,,S,S, +Il a , (P ) (s ,  - m,)I ’ 

Now we expand -PG(P, m,)  around P = 0 using a Taylor expansion: 

where we have temporarily suppressed the dependence of G on m,. From the definition 
of -pG(P,  mi)  given in equation (3)  we find that 

Using equation ( 5 ) ,  we recover 

- p ~ ( p ,  m,)  I = - {;(I+ m,)  ln[+(l+ m,) ]  +;(I - m,)  1n[+(l- m , ) ~ )  
p = o  I 

(8) 

which is the entropy of non-interacting Ising spins constrained to have magnetisations 
rn,. Considering, next, the first derivative in equation (5), we find that 

At P = 0, the spin-spin correlation functions factorise, so we find that 

Continuing to the second derivative in the Taylor expansion, we find, after a short 
computation, that 

which is the famous Onsager reaction term in the TAP equations. To compute ( l l ) ,  
one needs to use the Maxwell relation: 
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The Taylor expansion can be continued to arbitrarily high order. To order P4, one 
finds that 

-PG(P, m , ) =  - C { f ( l + m , )  In[? i ( l+m,) l+f ( l -m,) ln[? i ( l -m, ) ]}+P C J,,m,m, 
I ( U )  

+p4 C J ~ , J , k J k r J I , ( l - m ; ? ) ( l - m , ’ ) ( l - m Z , ) ( l - m : ) + .  . . . (13) 
( y k l )  

The notation (ij), ( i j k )  or ( i jk l )  means one should sum over all distinct pairs, triplets 
or quadruplets of pins. 

The Taylor expansion which is being described is clearly a high-temperature 
expansion (directly in p rather than tanh(P)) at a fixed (site-dependent) magnetisation 
m, .  Setting m, = 0, one recovers from equation (13) the ordinary high-temperature 
expansion of the Ising model. From a diagrammatic point of view, there are two 
changes that occur in the expansion of the free energy when m, # 0: (i) new diagrams 
appear corresponding to terms like Z J,mlm,; ( i i )  diagrams which appeared even for 
m, = 0 are modified to have new weights associated with the magnetisations at the 
vertices. Although we were not able to prove it, we believe that the only non-zero 
diagrams in this generalised expansion are ‘strongly irreducible’-i.e. even removing 
a vertex does not split the diagram into two pieces. We found this to be true by direct 
calculation for relatively low-order diagrams, and we also note that if it were not true, 
non-strongly irreducible diagrams would also modify the TAP theory of the infinite-range 
spin glass. 

3. Specialising to the fully frustrated case 

Let us now specialise to a fully frustrated hypercubic lattice with bonds JI,  = *l/a. 
In the limit of infinite dimensionality, and assuming that only strongly irreducible 
diagrams contribute, we find a very drastic simplification in the number of high- 
temperature diagrams which contribute to the free energy. In fact, the only diagrams 
which survive are those corresponding to the zeroth, first and second derivatives 
calculated above and diagrams in which the vertices are arranged in a closed loop (see 
figure 1). The loop diagrams are all O(1) because each bond in the loop contributes 
a factor of l/a but if the loop consists of b bonds, then there are O ( d b ” )  such loops 
on the lattice. It is obvious that other strongly irreducible diagrams will always be of 
lower order than the loop diagrams. Note that by setting all mi = 0, we recover from 
the loop diagrams the term-by-term expansion around P = 0 of the free energy in the 
high-temperature phase given by equation ( 2 )  above. 

To extend these high-temperature results into the low-temperature phase we need 
to make the following reasonable assumption: that in the limit as the number of spatial 
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Figure 1. The Gibbs free energy of the ’fully frustrated’ Ising model on a hypercubic lattice 
in the limit of infinite dimensions. 

dimensions approaches infinity, the equilibrium squared magnetisation at each site 
will become uniform. We believe that this assumption is reasonable because each site 
is a priori identical and feels the field caused by many other sites. Note that we are 
only assuming that the squared magnetisation, not the magnetisation itself, is uniform. 

Given this assumption, extending the high-temperature results into the low- 
temperature phase is rather simple. The ‘In 2’ in equation ( 2 )  becomes the entropy of 
spins fixed to a given site-dependent magnetisation. One needs to add a X J,,m,m, term. 
Using the uniformity of the squared magnetisation, we can write m, = d ? ~ ~ ,  where 
E ,  = * 1 and q is the squared magnetisation. Finally, the loop diagrams can be handled 
by noting that in the high-temperature phase the infinite summation of these diagrams 
yielded the expression in equation (2). One can easily show that in the low-temperature 
phase the only modification of the loop diagrams is that every factor of p should be 
replaced by a factor of p (1 - q ) .  Thus we can again sum the loop diagrams and find 
the Gibbs free energy: 

(14) 
[ 1 +Sp2( 1 - q)2]1’2 - 1 1 1 +[ 1 +8p2(1  - q)’]’’’ + 4 --in( 4 2 

Now we minimise G over the E ~ ,  to find an effective free energy which is valid in our 
restricted subspace in which all the squared magnetisations are identical: 

(15) 
[ l  +Sp2( 1 - q)*]”’- 1 1 1 + [l  +Sp2(l - q)2]”2 + 4 --In( 4 2 

where e is the ground-state energy density of the model. 
One can solve the model for any value of e, but the studies in [ 2 ]  of the ground-state 

energy density as a function of dimension motivate the choice e = -1. They found in 
[ 2 ]  that the ground-state energy density of any n-component spin model on a fully 
frustrated lattice in any dimension was bounded below by -1. For all n > 1, this bound 
could be achieved in any dimension, but for n = 1, there is a possibly tighter bound 
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caused by the Ising nature of the spins. On the other hand, the Ising model empirically 
achieved the tighter bound for all dimensions tested (up to d = 7 )  and the tighter bound 
approaches -1  in the limit of infinite dimensions. 

To solve the model, we minimise this free energy as a function of the squared 
magnetisation. We find (for e = -1) two phases, separated by a first-order transition 
at pc = 0.982. In  the high-temperature phase, 4 = 0. In the low-temperature phase 

The energy density is given by 

At the transition, 4, = 0.778, so the latent heat density is L = 0.326. The results will be 
qualitatively similar for all ground-state energy densities e such that - 1  e < - l / f i .  
For e 3 -1/fi, the stable state at very low temperatures is actually paramagnetic, but 
such a value of e seems extremely unlikely given the results of [2]. 

One might also note that the free energy given in equation ( 1 5 )  only has a finite 
radius of convergence (in p )  for any value of q, and in fact the high-temperature 
expansion is not convergent at the equilibrium temperature for any value of 4, including 
4 = 0 .  

All these results are rather different than the corresponding results for the infinite- 
range (or infinite-dimensional [ lo])  Ising spin glass, For the spin glass, the transition 
is third order, with only a cusp in the specific heat at T, [7]. Another difference is 
that at very low temperatures, the spin-glass order parameter has temperature depen- 
dence such that 1 - 4 - T 2  [7], while in the fully frustrated case, the order parameter 
approaches unity exponentially at low temperatures. 

4. Discussion 

Some comments are in order. First, it is interesting to see that the frustration in this 
model causes the mean-field theory to have such a high degree of reactivity that an 
infinite summation of diagrams is necessary to recover the free energy. This feature 
is connected to the l / a  scaling of the bonds and is likely to appear in other non-trivial 
models. For example, in the Hubbard model, the scaling of the electron hopping term 
t ,  in high dimensions is also 1 / a  [15], so one can expect that to recover the free 
energy in the limit of infinite dimensions, another infinite summation of loop diagrams 
will be necessary (in this case the loops correspond to the electron hopping around a 

Secondly, the method used to solve this model is of very great generality. In the 
case at hand, the model was of sufficient complexity that even the solution in infinite 
dimensions was non-trivial. In other models where the infinite-dimensional mean-field 
theory is known, the higher-order terms in the high-temperature expansion at fixed 
magnetisation will give 1/  d corrections to mean-field theory [9]. Since mean-field 
theory is used so widely in physics, it is obviously of interest to have such a simple 
method of calculating the corrections in finite dimensions. 

loop). 
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